GMAT数学备考五大高分思维方式

2017-12-16 353人浏览

  GMAT数学一般都是中国学生能拿高分的项目,并且GMAT数学满分随处可见,那么,要具备怎样的方法GMAT数学才能拿到高分呢,下面为大家介绍GMAT数学解题方法,帮助大家轻松获得GMAT数学满分。

  数形结合

  数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体,通过“形”往往可以解决用“数”很难解决的问题。

  变量替换

  换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果。换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的。


加拿大留学,GMAT数学


  学会转化

  所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题。

  转化与化归的思想方法是数学中最基本的思想方法。数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段,所以说转化与化归是数学思想方法的灵魂。

  函数与方程

  函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题。方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理, 实现问题与方程的互相转化接轨,达到解决问题的目的。

  分类讨论

  所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答。实质上分类讨论是“化整为零,各个击破,再积零为整的策略。分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论。”

   小编祝各位考生备考顺利!


了解更多关于加拿大留学与移民服务相关情况,请点击:
移民服务

热门阅读

1 加币与人民币兑换方法详解

2 关于卡尔顿大学会计硕士专业的简单介绍

3 注意,留学换汇要填申请书

4 加拿大留学:yyz1,yyz2,yyz3,yyz4是什么意思

5 加拿大留学:温莎大学与底特律大学比较哪个好

你可能感兴趣的学校

多伦多大学

多伦多大学

10436 人关注

约克大学

约克大学

8534 人关注

麦吉尔大学

麦吉尔大学

7815 人关注

麦克马斯特大学

麦克马斯特大学

5828 人关注

阿尔伯塔大学

阿尔伯塔大学

5113 人关注

院校对比 0
清除所有

哎呦,你还没有选感兴趣的学校呢。

开始对比